The practice problem below tests your understanding of absolute value inequalities and how it relates to the geometric interpretation on the number line.
The solution set of $|x-a| \leq 3$ is the set of all real numbers $x$ such that:
- $\quad a-3 \leq x \leq a+3$
- $\quad x \leq a-3 \quad \textrm{or} \quad x \geq a+3$
- $\quad x \geq a-3 $
- $\quad x \leq a+3$
- $\quad -a-3 \leq x \leq -a+3$